Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bo Yang, Hui-Xiang Li, Shu-Sheng Zhang* and Xue-Mei Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.047$
$w R$ factor $=0.127$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl)thiosemicarbazide

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$, the hexopyranosyl ring adopts a chair conformation. The acetyl group at C 4 occupies an axial position, while all other substituents are equatorial. The molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into ribbons parallel to the a axis, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions provide further stability in a three-dimensional network.

Comment

Substituted thioureas and thiosemicarbazides have attracted much attention in recent years because of their anti-HIV potential (Venkatachalam et al., 2001) and their importance in the preparation of corresponding semicarbazides (Li et al., 2001) and heterocyclic compounds (Wang et al., 2001). We have reported the synthesis and structure of N -amino- N -(2,3,4,6-tetra- O-acetyl- β-D-xylopyranosyl)thiocarbamide (II) (Yang et al., 2004) and this work has been extended to the synthesis of the title compound (I) whose structure is reported here (Fig. 1, Table 1). All bond lengths and angles in (I) are within normal ranges (Allen et al., 1987), and compare well with those values in compound (II). The acetyl group at C4 occupies an axial position, while all other substituents are equatorial. The pyranosyl ring adopts a chair conformation with the S 1 atom in a synperiplanar position with respect to C 1 . The $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 15-\mathrm{S} 1$ torsion angle is $-5.5(4)^{\circ}$. Atom O5 is disordered over two positions, with refined site occupancies of 0.32 (6) for O5A and 0.68 (6) for O5B.

(I)

In the crystal structure of (I), molecules are linked into ribbons along the a axis by $\mathrm{C} 12-\mathrm{H} 12 C \cdots \mathrm{O} 5 B$ hydrogen bonds (Fig. 2). The packing is further stabilized by N2$\mathrm{H} 2 A \cdots \mathrm{O} 1$ interactions (Table 2), forming a three-dimensional framework.

Experimental

The title compound was prepared by the method of Yang et al. (2004). Colourless crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from ethyl acetate/petroleum ether (1:2 v / v).

Received 29 November 2005
Accepted 5 December 2005
Online 10 December 2005

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$
$M_{r}=421.42$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=7.5445$ (11) \AA
$b=8.6792$ (13) \AA
$c=31.229$ (5) \AA
$V=2044.9(5) \AA^{3}$
$Z=4$
$\mathrm{Z}=4$
$D_{x}=1.369 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Simens SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.940, T_{\text {max }}=0.977$
11659 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.127$
$S=1.02$
4041 reflections
263 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 3602
reflections
$\theta=2.4-22.3^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.30 \times 0.14 \times 0.11 \mathrm{~mm}$

4041 independent reflections
3407 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-7 \rightarrow 10$
$l=-37 \rightarrow 38$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0739 P)^{2}\right. \\
& +0.2979 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1690 Friedel pairs
Flack parameter: 0.03 (12)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C15	$1.679(3)$	N1-C1	$1.414(3)$
O1-C1	$1.426(3)$	N2-C15	$1.332(4)$
O1-C5	$1.427(3)$	N2-N3	$1.395(4)$
N1-C15	$1.350(3)$		
N3-N2-C15-N1	$5.7(4)$	C1-N1-C15-N2	$175.9(2)$
N3-N2-C15-S1	$-172.9(2)$	C1-N1-C15-S1	$-5.5(4)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.58	$3.427(3)$	168
$\mathrm{C} 12-\mathrm{H} 12 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.31	$3.12(2)$	141

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$.
All H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms $]$ and $\mathrm{N}-\mathrm{H}=0.86 \AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in University (No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (No. J04B12).

Figure 1
The structure of compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are omitted for clarity.

Figure 2
Packing diagram for (I), showing the formation of ribbons along the a axis. H bonds are drawn as dashed lines.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Li, Z., Wang, X., Da, Y. \& Chen, J. (2001). Synth. Commun. 31, 1433-1440. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Venkatachalam, T. K., Sudbeck, E. A., Mao, C. \& Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523-528.
Wang, X., Li, Z., Zhang, Z. \& Da, Y. (2001). Synth. Commun. 31, 1907-1911.
Yang, B., Zhang, S.-S., Wang, Y.-F., Li, X.-M. \& Jiao, K. (2004). Acta Cryst. E60, o568-o570.

